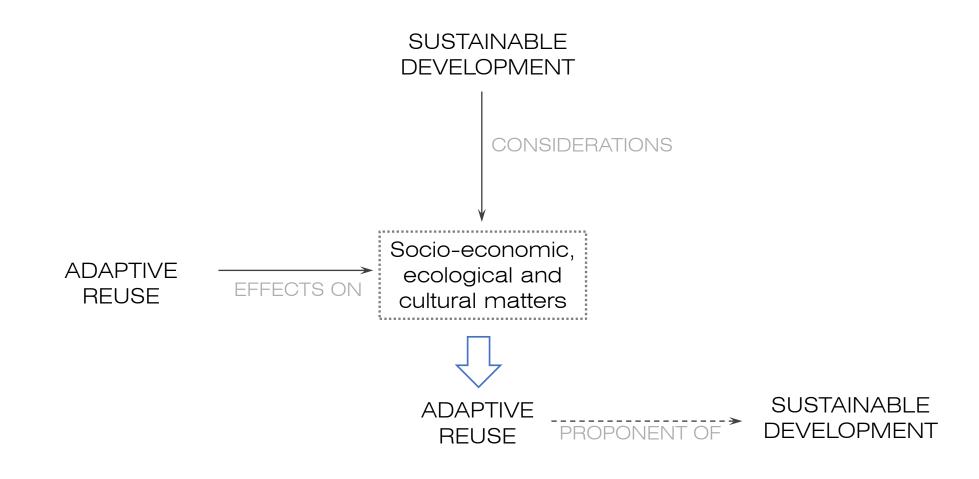


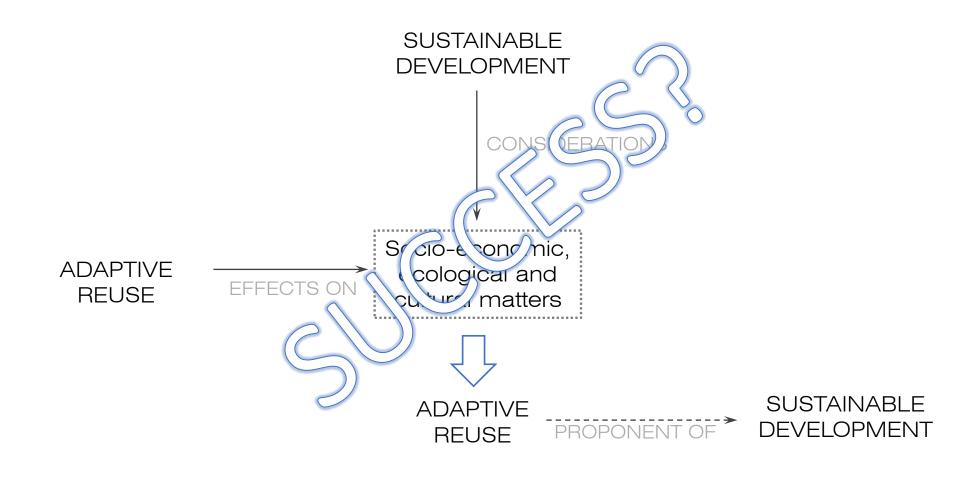
International Seminar: ADAPTIVE REUSE

ADAPTIVE REUSE:

HOW SUCCESSFUL CAN A RECOVERY BE WITHIN THE CONTEMPORARY *SUSTAINABLE* ERA?



Despina Parpas


B.Sc. | Dipl. | M.A. | Ph.D.

Architect | Researcher E: despinaparpa@mail.com

ADAPTIVE REUSE: HOW SUCCESSFUL CAN A RECOVERY BE WITHIN THE CONTEMPORARY *SUSTAINABLE* ERA?

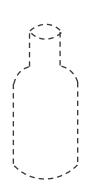
ADAPTIVE REUSE: HOW SUCCESSFUL CAN A RECOVERY BE WITHIN THE CONTEMPORARY *SUSTAINABLE* ERA?

OVERVIEW

Adaptive Reuse

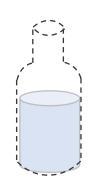
Adaptive Reuse and Sustainability-driven Developments

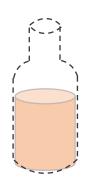
Successful (?) Recoveries within the Build Environment

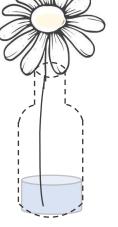

Empirical Research: Model establishing the most Important Criteria

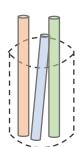
Findings and Reflection on Current Situation

- "to re-use a building or structure for the purpose of giving it new life through a new function" (ODASA, 2014)
- "adaptive reuse is described as developing the potential of additional use and wear for functionally obsolete buildings it is essentially the recycling of a building" (Ijla & Broström, 2015)
 - Not just restoration and renovation
 - Not necessarily implying a change of use but generally as works including "rehabilitation, renovation or restoration" (Bullen, 2007)

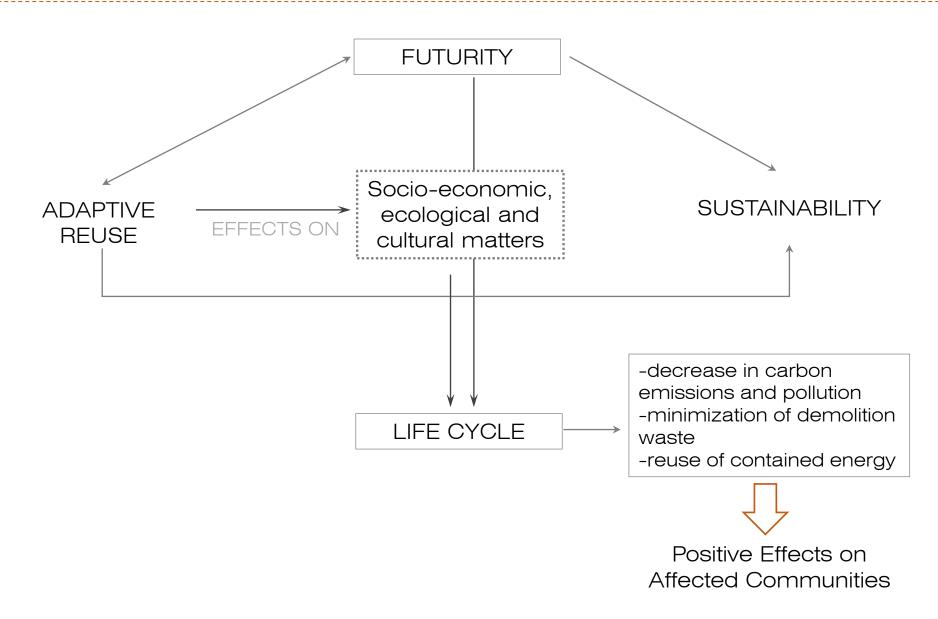

• from Latin 'ad'+'aptar' which means to+fitTO FIT WHAT?

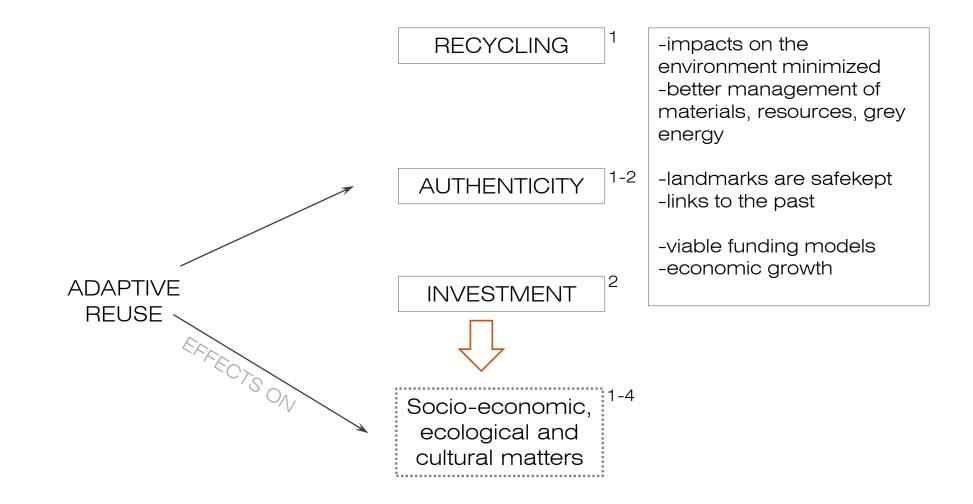



'ad'+'aptar' which means to+fit



Purpose: extension of useful life





ADAPTIVE REUSE AND SUSTAINABILITY-DRIVEN DEVELOPMENTS

ADAPTIVE REUSE AND SUSTAINABILITY-DRIVEN DEVELOPMENTS

FINDINGS AND REFLECTION ON CURRENT SITUATION

SUSTAINABILITY

Multi-dimensional Character¹

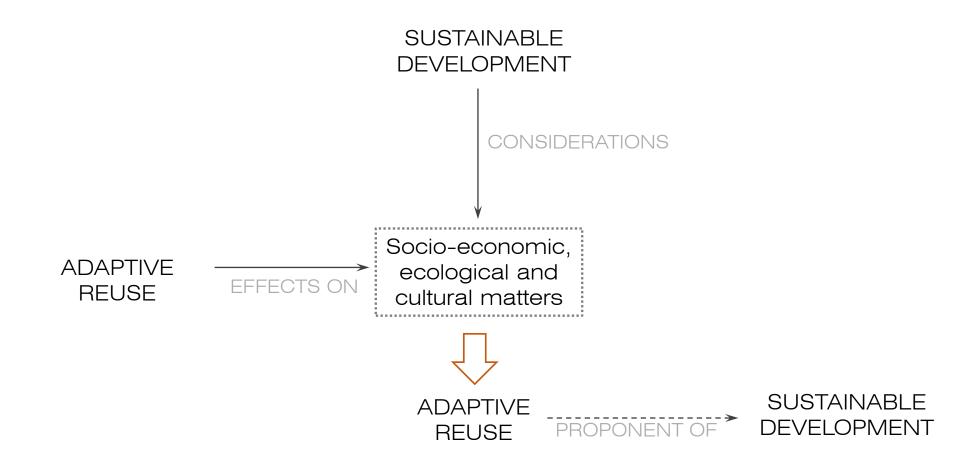
Not a fixed definition 1-3

A Process

Not a Score to Achieve

Not a Balance Sheet²

Change in Mentality and Habits


CONSIDERATIONS

Socio-economic, 4-8 ecological and cultural matters

^{1:} Worster, 1993, 2: Djalali & Vollard, 2008, 3: Pyla, 2008, 4: Cooper, 1999, 5: Kohler, 1999, 6: Ding, 2008,

^{7:} Rypkema, 2005, 8: Merlino & Steinbrueck, 2008

ADAPTIVE REUSE AND SUSTAINABILITY-DRIVEN DEVELOPMENTS

ADAPTIVE REUSE?

A method of extending the useful life of buildings by a combination of improvement

and conversion

Success??

On which grounds?

-quality

-general public perception

-popularity

ADAPTIVE REUSE?

ADAPTIVE REUSE?

ADAPTIVE REUSE?

ADAPTIVE REUSE?

ADAPTIVE REUSE?

ADAPTIVE REUSE?

Success

Measuring Success/ Degree of Success:

Expressing the intangible quantity in tangible terms

-A formula was created using a measurable quantity (time/ active years), to investigate the extent to which the adaptation benefited the unit itself, by continuing its life

-In cases where the strategy implemented led to more active years, then the reuse was considered more successful.

MULTIPLE LINEAR REGRESSION ANALYSIS

OBJECTIVE: Correlation between the selected variables with the Degree of Success
 of Adaptive Reuse (DoSAR)

/ to establish the criteria that mostly affect a successful adaptive reuse

- Assessment of a large number of built examples
- →better and more precise results within the framework of this research
- The data collected is cross-sectional; the data concerns different built examples
 through a given timeframe

• A Multi-attribute framework embraces the uniqueness of the case studies

General Form:

$$y_i = \beta_0 + \beta_1 x_{1i} + \dots + \beta_k x_{ki} + u_i$$

- 'y': the dependent variable
- 'x' s: the independent variables
- 'k': the number of the regressors/independent variables
- 'i': the number of observations
- $'eta_k'$: the **relationship between 'y' and 'x'**. Estimated from the data collected
- u_i : Error of the model. Omitted variables
- The data collected for this project is **cross-sectional**; the data comes from observations on different built examples.

Use o

Use o

Energ

Maint

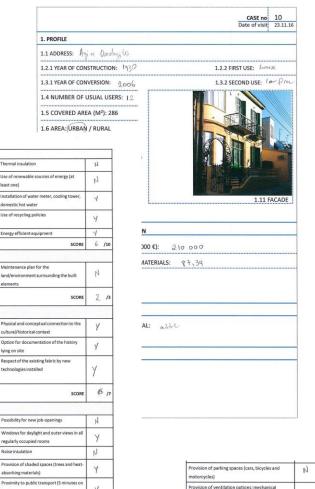
eleme

Cultui

Respe

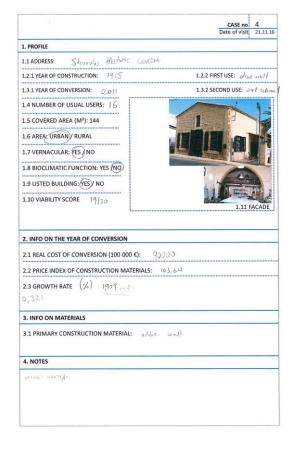
reguli Noise

stems or natural system through design or plans


bsorbing materials)

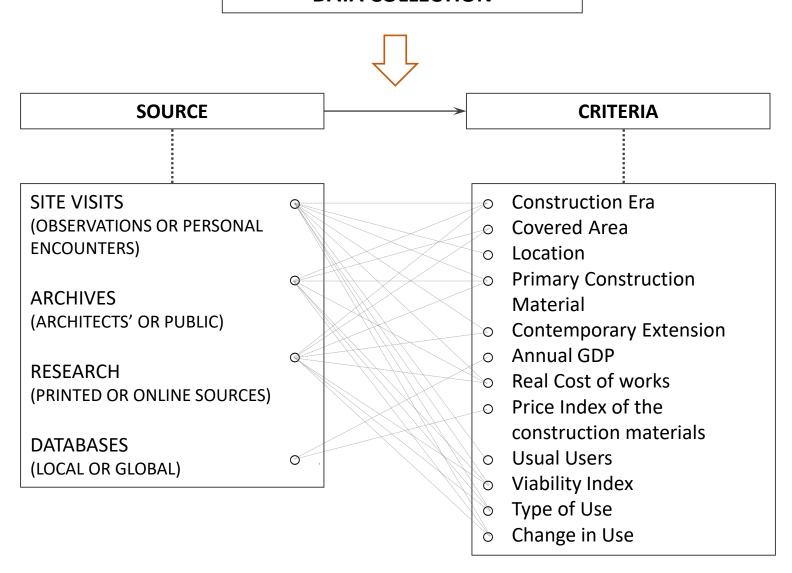
ovision of shaded spaces (trees and heat

SCORE


TOTAL SCORE

SCORE 6 /10

TOTAL SCORE



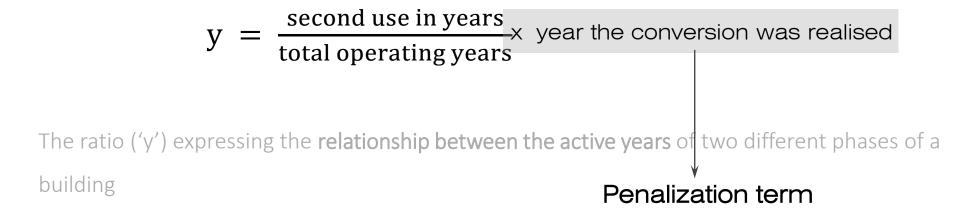
Provision of parking spaces (cars, bicycles and

ystems or natural system through design or plans

il insulation	N
renewable sources of energy (at	2
tion of water meter, cooling tower,	У
recycling policies	Ч
efficient equipment	Ч
SCORE	6 /10
nance plan for the wironment surrounding the built its	N
SCORE	2 /3
l and conceptual connection to the l/historical context	y
for documentation of the history	Ч
t of the existing fabric by new logies installed	Ч
SCORE	6 17
lity for new job-openings	4
ws for daylight and outer views in all ly occupied rooms	N
nsulation	N
on of shaded spaces (trees and heat- ing materials)	Ч
ity to public transport (5 minutes on	7
SCORE	S /10
TOTAL SCORE	19 /30

DATA COLLECTION

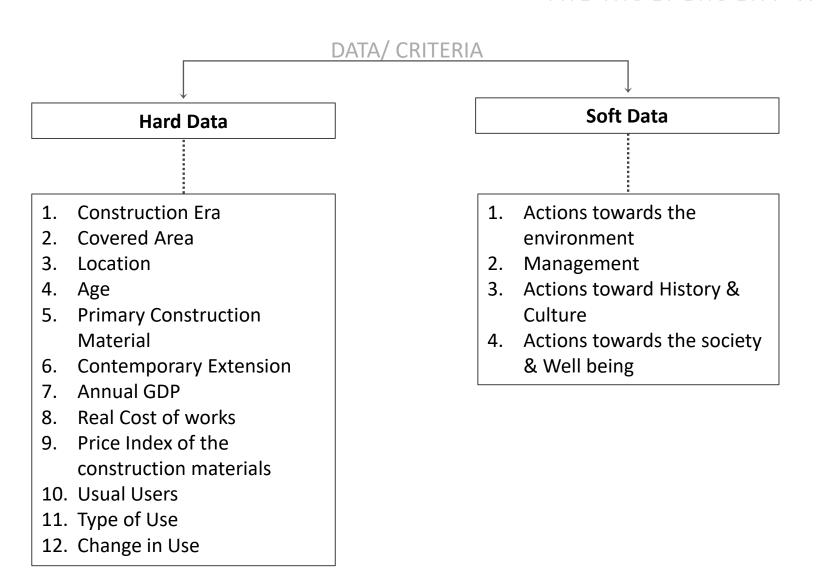
THE DEPENDENT VARIABLE


Need for an index establishing the degree of how successful a rehabilitation is:

$$y = \frac{\text{second use in years}}{\text{total operating years}}$$
 year the conversion was realised


The ratio ('y') expressing the **relationship between the active years** of two different phases of a building

THE DEPENDENT VARIABLE


Need for an index establishing the degree of how successful a rehabilitation is:

THE INDEPENDENT VARIABLES

THE INDEPENDENT VARIABLES

Variable Name	Storage Type	Variable Label
DoSAR	Real Number	DoSAR
ConEra	Dummy	Construction Era
NuU	Integer Number	Number of Usual Users
Lc	Dummy	Location
GdpG	Real Number	GDP Growth Rate
CostM2	Real Number	Real Cost per M2
PiCm	Real Number	Price Index of Construction Materials
Pcm	Dummy	Primary Construction Material
Tu	Dummy	Type of Introduced Use
VScr	Real Number	Viability Score Index
Ext	Dummy	Extension
Cu	Dummy	Change in Use

 $DoSAR_{i=}\beta_{0} + \beta_{1}ConEra_{1} + \beta_{2}NuU_{i} + \beta_{3}Lc_{i} + \beta_{4}GdpG_{i} + \beta_{5}CostM2_{i} + \beta_{6}PiCm_{i} + \beta_{7}Pcm_{i} + \beta_{8}Tu_{i} + \beta_{9}VScr_{i} + \beta_{10}Ext_{i} + \beta_{11}Cu_{i} + u_{i}$

Regression Run in Stata®

. reg DoSAR ConEra NuU Lc GdpG CostM2 PiCm Pcm Tu VScr Ext Cu

Source	SS	df	MS		Number of obs F(11, 77)	
Model Residual	1450012.44 263565.633		1819.312 22.93029		Prob > F R-squared Adj R-squared	= 0.0000 = 0.8462
Total	1713578.07	88 194	172.4781		Root MSE	= 58.506
Dosar	Coef.	Std. Err	. t	P> t	[95% Conf.	Interval]
ConEra	56.59666	15.9111	3.56	0.001	24.91361	88.27971
NuU	.0761036	.1573901	0.48	0.630	2373001	.3895074
LC	14.32749	14.97082	0.96	0.342	-15.48322	44.13821
GdpG	2.740354	2.362138	1.16	0.250	-1.963264	7.443971
CostM2	0064307	.0056194	-1.14	0.256	0176203	.004759
PiCm	-6.82166	.5334761	-12.79	0.000	-7.883947	-5.759374
Pcm	3.507657	15.7497	0.22	0.824	-27.854	34.86931
Tu	11.16138	19.06204	0.59	0.560	-26.796	49.11875
VScr	-118.1395	92.64651	-1.28	0.206	-302.6223	66.3433
Ext	-10.10934	13.79437	-0.73	0.466	-37.57744	17.35875
Cu	6.895591	16.84083	0.41	0.683	-26.63878	40.42996
_cons	863.5094	69.55531	12.41	0.000	725.0071	1002.012

Independent Variable	Expected Correlation with DoSAR	True Correlation with DoSAR
Construction Era	+/-	+
Number of Usual Users	+/-	+
Location	+	+
GDPG Rate	+	+
Real Cost per m²	+	-
Price Index of the Construction Materials	_	_
Primary Construction Material	+/-	+
Type of Use	+/-	+
Viability Score	+	-
Extension	+	-
Change in Use	+/-	+

On the Variables' Statistical Significance

The **Price Index of the Construction Materials** is the **best regressor** (not the capital or economic growth)

The **Construction Era** (legislative background/construction technologies) is **statistically**significant

The prediction that the number of **Usual Users**, or the **Location** would be statistically significant **was overturned**

The **Original Materiality** of a unit holds minor significance

→ should not be a barrier in future adaptations

On the Variables' Statistical Significance

The Viability Index has small explanatory power over the DoSAR

→however, the manufactured system exists in the best version of the model

When the Index is examined (not as accumulative score but) in its four categories separately:

the **management** of the property and the actions towards the **socioeconomic** fabric and **wellbeing**: higher explanatory power

On the Variables' Statistical Significance

The **Use** itself holds **minor significance**:

- A public use is more probable to extend a unit's useful life
- Change of use, or a built extension have small contribution
- The 'change in use' and the 'type of use' can be omitted from the model, but the 'extension' should not

On the Project

Stakeholders' Stance:

Acknowledgement of all aspects of potential rehabilitation plans

- Single units
- Complexes
- Neighbourhoods

Contribution to decision Making?

Resource Management, Involved Costs (tangible and intangible,

Effective processes and Assessments

On the Project

Assessment Methodology:

evaluation of multiple examples at the same time

→robust results

indication of current behaviours and trends

→possibility to quantify different types of data

Data from Cyprus:

Sample should be expanded, more research in other regions

The Dependent Variable:

Manufactured to reflect success

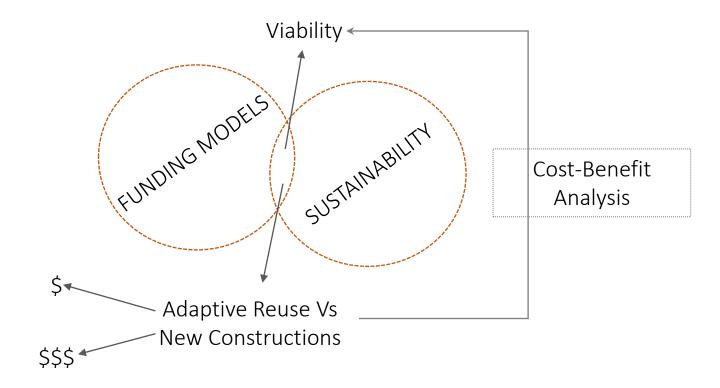
→ Not the same with popular rating systems

FINDINGS AND REFLECTION ON CURRENT SITUATION

On the Project

Future Development:

• Further exploration of the practice of Adaptive Reuse


Investigation of other regions

- Combined research and comparisons with the case of Cyprus (now a limitation)
 - Methodology could be applied in other aspects of the field of architecture

There can be economic, physical, legislative and utilitarian variables affecting an adaptation positively \rightarrow their contributions not equal

New trends, the growing needs, and the changing context into which the policies are developed reflect the need for constant evaluation and research.

International Seminar: ADAPTIVE REUSE

Thank you.

Despina ParpasB.Sc. | Dipl. | M.A. | Ph.D.

Architect | Researcher E: despinaparpa@mail.com